Computational Physics III

Winter semester 2024/2025

Lecture Topics (Prof. Sebastiano Bernuzzi)

• Introduction

- Partial differential equations (PDEs)
- PDEs classification
- Boundary value problems (BVPs) and initial value problems (IVPs)
- Well-posedness
- Standard physics problems

• Discrete representation

- Discretization of functions and derivatives
- Finite differencing
- Spectral and Fourier representation
- Consistency, Stability and Convergence

• Elliptic BVP

- BVP with the Laplace equation and Dirichlet boundaries in 1D
- BVP with the Laplace equation and Dirichlet boundaries in 2D
- Matrix inversion: direct and iterative methods
- Multigrid method
- Spectral methods

• Parabolic boundary-initial-value problems

- IBVP with the heat equation in 2D
- Time integration: explicit and implicit methods
- Von Neumann stability analysis

• Hyperbolic initial-value problems

- IVP: hyperbolicity and well-posedness
- Characteristics
- IVP with the wave equation in 1D
- Dissipation and dispersion
- Method of lines
- Open boundary conditions

Tutorials (Aurora Capobianco)

- Session 1
 - Introduction to git
 - Ssh keys, remote versus local version of the code
 - Creating repositories
 - $-\,$ Git commands
 - Testing merge conflicts
- Session 2
 - Introduction to python and Jupyter Notebook
 - Plotting with matplotlib
 - Arrays and matrices with numpy
 - Exercise: Matrix multiplication and the power method for eigenvalues
 - LU decomposition methods and their performance
- Session 3
 - The finite difference method
 - Exercises: Implementation with/without loops
 - The importance of vectorization
 - Introduction to python classes
- Session 3
 - BV problem with Poisson equation in 1D
 - Dirichlet boundary conditions
 - Using finite differencing, shooting method, Fourier method
- Session 4
 - Poisson equation in 2D
 - Using direct finite differencing and Jacobi iteration
- Session 5
 - Heat equation in 2D
 - Using implicit finite differencing
- Session 6
 - Wave equation in 1D
 - Flux conservative finite difference
- Session 7
 - Wave equation in 2D